Multiscale characterisation of S960 AHSS for bendability

Cameron Bee (PhD Student)

Supervisors: Prof Claire Davis (WMG), Dr Carl Slater (WMG), Dr Didier Farrugia (Tata Steel)

25th February 2020 – 3rd MPI symposium on ferrous metallurgy

Research Rationale

- Drive to improve the performance of UHSS strip steel products aimed at the yellow goods market.
- Cold bending operations form hollow sections from blanks, a limiting factor in the development of the product.
- An understanding of the (micro)structure property relationship is a key to enabling product improvement.

Research Rationale

- Inhomogeneity leads to strain differentials within the microstructure, contributing to poor bending performance.
- A range of factors cause this, some of which are being investigated.

Nanohardness phase mapping of mixed microstructure steels

Microstructural Features

Lower bainite

Auto tempered martensite

Carbides along one orientation within lathes Carbides along 3 orientations (X,Y,Z)

Martensite/ Bainite Microstructures 🥥

25% autotempered martensite,75% lower bainite

75% autotempered martensite,25% lower bainite

Martensite/ bainite microstructures

- Mapping arrays created using a range of steels with known phase fractions of lower bainite & autotempered martensite.
- LB microhardness: 378 (HV 0.01), ATM microhardness: 410 (HV 0.01.

Nanoindentation

- Load capacity from <0.2mN to 500mN with hardness information determined from load/ displacement hysteresis.
- A hardness matrix is used to map changes in the microstructure across a plane section.
- Strong dependence on indent volume of influence/ phase region size.

- Theoretical indent map overlaid onto etched optical images of a known ferrite/ pearlite mixed microstructure as proof of concept.
- Indent regions identified as ferritic, pearlitic or across a boundary.
- Range of equivalent indent diameters 1µm-6µm (approx. 1mN to 150mN indent load).

- Theoretical indent map overlaid onto etched optical images of a known ferrite/ pearlite mixed microstructure as proof of concept.
- Indent regions identified as ferritic, pearlitic or across a boundary.
- Range of equivalent indent diameters 1µm-6µm (approx. 1mN to 150mN indent load).

- Theoretical indent map overlaid onto etched optical images of a known ferrite/ pearlite mixed microstructure as proof of concept.
- Indent regions identified as ferritic, pearlitic or across a boundary.
- Range of equivalent indent diameters 1µm-6µm (approx. 1mN to 150mN indent load).

- Theoretical indent map overlaid onto etched optical images of a known ferrite/ pearlite mixed microstructure as proof of concept.
- Indent regions identified as ferritic, pearlitic or across a boundary.
- Range of equivalent indent diameters 1µm-6µm (approx. 1mN to 150mN indent load).

•••••	•••••	•••••	•••••••	
•••••	•••••		• • • • • • • •	
•••••	•••••		•••••••	
•••••	•••••	•••••	••••••••	
•••••	•••••	•••••	•••••••	, .
•••••	•••••	•••••	•••••••	
•••••	•••••	•••••	••••••	,
			• • • • • • • •	
•••••	•••••	•••••	••••••	, .
•••••	•••••	••••	••••••	
• • • • • • •	• • • • • •			
•••••	•••••	••••	••••••	
• • • • • • •	• • • • • •			,
	•••••	•••••		
•••••		$\bullet \bullet \bullet \bullet \bullet \bullet$	• • • • • • • •	,
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	•••••	•••••		· • • • • • • • • • • • • • •

- Theoretical indent map overlaid onto etched optical images of a known ferrite/ pearlite mixed microstructure as proof of concept.
- Indent regions identified as ferritic, pearlitic or across a boundary.
- Range of equivalent indent diameters 1µm-6µm (approx. 1mN to 150mN indent load).

Microhardness profiles

- Vickers HV 0.01 microhardness profiles taken using a Buehler Wilson VH3300 hardness tester.
- Microhardness is representative of the overall hardness of a material.
- Compositionally dependent however rule of mixtures applies.

Ferrite pearlite phase mapping

- Proof of concept testing undertaken using ferrite/ pearlite mixed microstructure steels.
 - Phase fraction compared to quantitative sample data and image analysis of etched sample.
- The "knee point" on the graph can be used to determine a phase fraction.

Lower bainite and autotempered martensite hardness arrays

Compositional band mapping

S960 XRF mapping (Mn)

S960 XRF Linescan

Mn through thickness linescans

S960 centreline nanohardness

Approximately a 20% composition and hardness difference between the enriched and depleted reigons measured.

Trial 718 centreline mapping

- Average hardness from surface downwards with variance determined and mapped.
- Aim to use comparative tests to relate to strain/ shear band formation.
- Mean max depth: 800nm, Mean indent side length 4.6um.

DIC bend testing/ strain analysis

DIC bend testing

- Insitu SEM bend testing following sample characterisation.
- Post test DIC strain analysis.
- Test to ASTM standards to minimise shear.

Bend test XRF

- XRF through thickness of primary bend region.
- Potential for localised EDS in DIC area.
- Identification of compositional band density and magnitude.

Bend test XRF

- XRF through thickness of primary bend region.
- Potential for localised EDS in DIC area.
- Identification of compositional band density and magnitude.

2mm Sample 1 (initial test) – nHV

- Cumulative frequency plot for 20x20 nanohardness array at 70mN.
- Array taken away from bend test location so as not to induce surface defects/ surface work hardening.
- Maps/ plots can be compared.

Inclusions

Variety of inclusions have been found in the sample including CaS, MnS and Alumnia based compounds.

Longitudinal bend test data

- Force/ extension curve for bed test.
- Test objective for identification of strain features rather than mechanical testing, but graph included for reference.

2mm sample **1** – **DIC** strain analysis

Strain localisation shown using DAVIS 8 DIC analysis software.

Strain Analysis

Post test 3D optical images.

Summary

- Improved bending performance is a development area for S960 AHSS strip.
- Characterisation methods are being used to improve understanding of the structure-property-relationship.
- Compositional inhomogeneity has been identified and is being tested using DIC SEM bend testing.

Questions?

